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Abstract

We carry out an experimental analysis of a number of shortest path (rout-
ing) algorithms investigated in the context of the TRANSIMS (TRansportation
ANalysis and SIMulation System) project. The main focus of the paper is to
study how various heuristic and exact solutions, associated data structures af-
fected the computational performance of the software developed especially for
realistic transportation networks. For this purpose we have used Dallas Ft-Worth
road network with very high degree of resolution. The following general results
are obtained.

1. We discuss and experimentally analyze various one-one shortest path algo-
rithms. These include classical exact algorithms studied in the literature as
well as heuristic solutions that are designed to take into account the geomet-
ric structure of the input instances.

2. We describe a number of extensions to the basic shortest path algorithm.
These extensions were primarily motivated by practical problems arising
in TRANSIMS and ITS (Intelligent Transportation Systems) related tech-
nologies. Extensions discussed include — (i) Time dependent networks, (ii)
multi-modal networks, (iii) networks with public transportation and associ-
ated schedules.

Computational results are provided to empirically compare the efficiency of
various algorithms. Our studies indicate that a modified Dijkstra’s algorithm is
computationally fast and an excellent candidate for use in various transportation |
planning applications as well as ITS related technologies. |

Keywords: Experimental Analysis, Transportation Planning, Algorithms, Network Design,
Shortest Paths Algorithms.
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1 Introduction

TRANSIMS is a multi-year project at the Los Alamos National Laboratory and is funded by the
Department of Transportation and by the Environmental Protection Agency. The main purpose of
TRANSIMS is to develop new methods for studying transportation planning questions. A typical
example of a question that can be studied in this context would be to study the economic and social
impact of building a new freeway in a large metropolitan arca. We refer the reader to [TR+95a)] and
the web-site http://www-transims.tsasa.lanl.gov/research team/papers/ for
more details about the TRANSIMS project. ;
~ The main goal of the paper is to describe the computational experiences in engineering various
path finding algorithms specifically in the context of TRANSIMS. Most of the algorithms discussed
here are not new; they have been discussed in the Operations Research and Computer Science com-
munity. Although extensive research has been done on theoretical and experimental evaluation of
shortest path algorithms, most of the empirical research has focused on randomly generated networks,
special classes of networks such as grids. In contrast, not much work has been done to study the com-
putational behavior of shortest path and related routing algorithms on realistic traffic networks. The
realistic networks differ with random networks as well as homogeneous (structured networks) in the
following significant ways:
(1) Realistic networks typically have a very low average degree. In fact in our case the average degree

of the network was around 2.6. Similar numbers have been reported in [ZN98]. In contrast random
networks used in [Pa84] have in some cases average degree of up to 10. ‘
(ii) Realistic networks are not very uniform. In fact, one typically sees one or two large clusters

(downtown and neighboring areas) and then small clusters spread out throughout the entire area of
interest. :
(iii) For most empirical studies with random networks, the edge weights are chosen independently

and uniformly at random from a given interval. In contrast, realistic networks typically have short
links.

With the above reasons and specific application in mind, the main focus of this paper is to carry
out experimental analysis of a number of shortest path algorithms on real transportation network and
subject to practical constraints imposed by the overall system.

The rest of the report is organized as follows. Section 5 describes our experimental setup. Sec-
tion 6 describes the experimental results obtained. Finally, in Section 8 we give concluding remarks
and directions for future research. We have also included an Appendix (Section 8.1) that describes
the relevant algorithms for finding shortest paths in detail.

2 Problem specification and justification

The problems discussed above can be formally described as follows: let G(V, E) be a (un)directed
graph. Each edge e € E has one attribute — w(e). w(e) denotes the weight of the edge (or cost)
e. Here, we assume that the weights are non-negative floating point numbers. Most of our positive
results can in fact be extended to handle negative edge weights also (if there are no negative cycles).

Definition 2.1 One-One Shortest Path:
Given a directed weighted, graph G, a source destination pair (s, d) find a shortest (with respect to
w) path p in G from s to d.




Note that our experiments are carried out for shortest path between a pair of nodes, as against to
finding shortest path trees. Much of the literature on experimental analysis uses the latter measure to
gauge the efficiency. Our choice for the measure is motivated by the following observations:

1. We wanted the route planer to work for roughly a million travelers. In highly detailed networks,
most of these travelers have different starting points (for example, for Portland we have 1.5 mil-
lion travelers and 200 000 possible starting locations). Thus, for any given starting location,
we could re-use the tree computation only for of the order of ten other travelers,

2. We wanted our algorithms to be extensible to take additional elements into account. For ex-
ample, each such traveler typically has a different starting time for his/her trip. Since we use
our algorithms for time dependent networks (networks in which edge weights vary with time),
the shortest path tree will be different for each traveler. Another example in this context is to
find paths for travelers in network with multiple mode choices. In this context, we are given
a directed labeled, weighted, graph G representing a transportation network with the labels on
edges representing the various modal attributes (e.g. a label £ might represent a rail line). The
goal is typically to find shortest (simple) paths subject to certain labeling constraints on the
set of feasible paths. In general, the criteria for path selection vary so much from traveler to
traveler that it becomes doubtful that the additional overhead for the “re-use” of information
will pay off.

3. The TRANSIMS framework allows us to use paths that are not necessarily optimal. This
motivates investigation into the possible use of heuristic solutions for obtaining near optimal
paths (e.g. the modified A* algorithm). For most of these heuristics, the idea is to bias a more
focused search towards the destination — thus naturally motivating the study of one-one shortest

‘ path algorithms.

4. Finally, the networks we anticipate to deal with contain more than 80000 nodes and around
120000 edges. For such networks storing shortest path trees amounts to huge memory over-
heads.

3 Choice of algorithms

Important objectives used to evaluate the performance of the algorithms include (i) time taken for
computation on real networks, (ii) quality of solution obtained, (iii) ease of implementation and (iv)
extensibility of the algorithm for solving other variants of the shortest path problem. A number
interesting engineering questions were encountered in the process. We experimentally evaluated a
number of variants of basic Dijkstra’s algorithm. The basic algorithm was chosen due to the recom-
mendations made in Cherkassky, Goldberg and Radzik [CGR96] and Zhan and Noon [ZN98]. The
algorithms studied were:

e Dijkstra’s algorithm with Binary Heaps [CGR96],
e A* algorithm proposed in Al literature and analyzed by Sedgewick and Vitter [SV86],
e amodification of the A* algorithm that we will describe below, and alluded to in [SV86].




We also considered a bidirectional version of Dijkstra’s algorithm described in [Ma, LR89]. We
briefly recall the A* algorithm and the modification proposed. Details of these algorithms can be
found in the Appendix. When the underlying network is Euclidean, it is possible to improve the
average case performance of Dijkstra’s algorithm. Typically, while solving problems on such graphs,
the inherent geometric information is ignored by the classical path finding algorithms. The basic idea
of improving the performance of Dijkstra’s algorithm is from Sedgewick and Vitter [SV86] and is
originally attributed to Hart Nilsson and Raphel [HNR68] can be described as follows. To build a
shortest path from s to £, we use the original distance estimate for the fringe vertex such as z, i.c.
from s to z (as before) plus the Euclidean distance from z to ¢. Thus we use global information about
the graph to guide our search for shortest path from s to . The resulting algorithm typically runs
much faster than Dijkstra’s algorithm on typical graphs for the following intuitive reasons: (i) The
shortest path tree grows in the direction of ¢ and (ii) The search of the shortest path can be terminated
as soon as ¢ is added to the shortest path tree.

We can now modify this algorithm by giving an appropriate weight to to the distance from z to
t. By choosing an appropriate multiplicative factor, we can increase the contribution of the second
component in calculating the label of a vertex. From a intuitive standpoint this corresponds to giving
the destination a high potential, in effect biasing the search towards the destination. This modification
will in general not yield shortest paths, nevertheless our experimental results suggest that the errors
produced are typically quite small.

4 Summary of Results

We are now ready to summarize the main results and conclusions of this paper. As already stated
the main focus of the paper is towards engineering well known shortest path algorithms in a practical
setting. Another goal of this paper is also to provide reasons for and against certain implementations
from a practical standpoint. We believe that our conclusions along with the earlier results in [ZN98,
CGR96] provide practitioners an useful basis to select appropriate algorithms/implementations in the
context of transportation networks. The general results/conclusions of this paper are summarized
below.

1. We conclude that the simple Binary heap implementation of Dijkstra’s algorithm is a good
choice for finding optimal routes in real road transportation networks. Specifically, we found
that a certain types of data-structure fine tuning did not significantly improve the performance
of our implementation.

2. Our results suggest that heuristic solutions that aim at using the geometric structure of the
graphs are attractive candidates for future research. Our experimental results motivated the
formulation and implementation of an extremely fast heuristic extension of the basic A* algo-
rithm that seems to yield near optimal solutions.

3. We have extended this algorithm in two orthogonal and important directions; (i) time dependent
networks and (ii) multi-modal networks. These extensions are significant from a practical
standpoint since they are the most realistic representations of the underlying physical network.
We perform suitable tests to calculate the slow down experienced as a result of these extensions.

4. Our study suggests that bidirectional variation of Dijkstra’s algorithm is not suitable for trans-
portation planning. Our conclusions are based on two factors: (i) the algorithm is not extensible
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to more general path problems and (ii) the running time of the algorithm is more than A* algo-
rithm.

5 Experimental Setup and Méthodology

In this section we describe the computational results of our implementations. In order to anchor
research in realistic problems, TRANSIMS uses example cases called Case studies (See [CS97] for
complete details). This allows us to test the effectiveness of our algorithms on real life data. The case
study just concluded was focused on Dallas Fort-Worth (DFW) Metropolitan area and was done in
conjunction with Municipal Planning Organization (MPO) (known as North Central Texas Council
of Governments (NCTCOG)). We generated trips for the whole DFW area for a 24 hour period. The
input for each traveler has the following format: (starting time, starting location, ending location).2
There are 10.3 million Trips over 24 hours. The number of nodes and links in the Dallas network is
roughly 9863, 14750 respectively. The average degree of a node in the network was 2.5. We route
all these trips through the so-called focused network. It has all freeway links, most major arterials,
etc. Inside this network, there is an area where all streets, including local streets, are contained in
the data base. This is the study area. We initially routed all trips between Sam and 10am, but only
the trips which did go through the study area were retained, resulting in approx. 300000 trips. These
300 000 trips were re-planned over and over again in iteration with the micro-simulation(s). For more
details, see, e.g., [NB97, CS97]. A 3% random sample of these trips were used for our computational
experiments. Finally, the number of Links of each class is as follows: -

Class Type Number | Number
(Oct96) | Feb 97
0 Centroid 2964 1422
1 Freeway 1962 1984
2 Principle Art. 2056 1251
3 Minor Art. 5079 2843
4 Collector 3830 2196
5 Local Street 144 1986
6 Freeway Ramp | 2704 2124
7 Frontage Road | 1037 944

Table 1: Summary of individual link types in Dallas Ft Worth Area. The third column summarizes
the numbers for the network used in October 1996 study. The numbers in the fourth column
summarize the numbers for the February 1997 network. As one can see the biggest change in the
numbers is in the local streets. The new network used has these streets encoded and thus is used by
the planner to route plans.

Preparing the network. The data received from DFW metro had a number of inadequacies from the
point of view of performing the experimental analysis. These had to be corrected before carrying out
the analysis. We mention a few important ones here. First, the network was found to have a number of
disconnected components (small islands). We did not consider (o, d) pairs in different components.
Second, a more serious problem from an algorithmic standpoint was the fact that for a number of
links, the length was less than the actual Euclidean distance between the the two end points. In most

2This is roughly correct, the reality is more complicated, [NB97, CS97].
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cases, this was due to an artificial convention used by the DFW transportation planners (so-called
centroid connectors always have length 10 m, whatever the Euclidean distance), but in some cases it
pointed to data errors. In any case, this discrepancy disallows effective implementation of A* type
algorithms. For this reason we introduce the notion of the “normalized” network: For all “too short”
links we set the reported length to be equal to the Euclidean distance.

We also carried out preliminary experimental analysis for the following network modifications
that could be helpful in improving the efficiency of our algorithms. These include: (i) Removing
nodes with degrees less than 3: (Includes collapsing paths and also leaf nodes) (ii) Modifying nodes
of degree 3: (Replace it by a triangle)

Hardware and Software Support. The experiments were performed on a Sun UltraSparc CPU with
250 Mhz, running under Solaris 2.5. 2 gigabyte main memory were shared with 13 other CPUs;
our own memory usage was always 150 MB or less. In general, we used the SUN Workshop CC
compiler with optimization flag -fast. (We also performed an experiment on the influence of different
optimization options without seeing significant differences.) The advantage of the multiprocessor
machine was reproducibility of the results, as the operating system has no need to interrupt since
requests by other processes were delegated to other CPUs.

Experimental Method We used the network described up front. We picked 10,000 arbitrary plans
from the case study. We used the timing mechanism provided by the operating system with granular-
ity .01 seconds (1 tick). We performed experiments only if the system load did not exceed the number
of available processors, i.e. processors do not get shared. As long as this condition was not violated
during the experiment, the running times were fairly consistent, usually within relative errors of 3%.

We used (a subset) of the following values measurable for a single or a specific number of com-
putation to conclude the reported results '

e (average) running time excluding i/o
¢ number of nodes fringe/expanded

e pictures of fringe/expanded nodes

e maximum heap size

number and length of the path

Software Design We are using the object oriented features as well as the templating mechanism of
C++ 1o easily combine different implementations. We also use preprocessor directives and macros.
We do not use virtual methods (even so it is tempting to create a purely virtual “network” base class)
to avoid unnecessary function calls (by this enable inlining of functions).

There are classes encapsulating the following elements of the computation:

¢ network (extensibility and different levels of detail lead to small, linear hierarchy)

plans: (o, d) pairs and real paths, starting time

e heap

labeling of the graph and using the heap

storing the shortest path tree
e Dijkstra’s algorithm

As to be expected, this approach leads to a formal overhead of function calls. As it tumns out, the
compiler optimization can take care of this fairly well. (There is a factor of 2-3 difference in running
time between debugging flag and full optimization.)
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6 Experimental Results

Design Issues about Data Structures We begin with the design decisions regarding the data struc-
tures used. ;

A number of altemative data structures were considered in the hope of investigating if these
improvements results in substantial improvement in the running time of the algorithm. The alterna-
tives tested included the following. (i) Arrays versus Heaps , (ii) Deferred Update, (iii) Hash Tables
for Storing Graphs, (iv) Smart Label Reset (v) Heap variations, and (vi) struct of arrays vs. array
of structs. Appendix contains a more detailed discussion of these issues. We found, that indeed
good programming practice, using common sense to avoid unnecessary computation and textbook
knowledge on reasonable data structures are useful to get good running times. For the alternatives
mentioned above, we did not find substantial improvement in the running time. More precisely, the
differences we found were bigger than the unavoidable noise on a multi-user computing environment.
Nevertheless, they were all below 10% relative difference. Thus, we do not discuss these results in
‘further detail.

Analysis of results. The plain Dijkstra, using static delays calculated from reported free flow speeds,
produced roughly 100 plans per second. Figure 1 illustrates the improvement by the obatined by A*.
The numbers shown in the comer of the network snapshots tell an average (100 repetitions) running
time for this particular O-D-pair, (destroying hash effects between subsequent runs) in system ticks.
It also gives the number of nodes expanded and fringe nodes. Note the changed scale of the depictions
due to the different nodes expanded. Overall we found that A* is faster than basic Dijkstra’s algorithm
by roughly a factor of 2. Also, recall that for the original network Sedgewick and Vitter’s heuristic
was not applicable: it turned out that there exist some links that have reported length much smaller
(factor 100) than the Euclidean distance of the endpoints. To be able to conduct any reasonable
experiment, we modified (“normalized”) the network as reported above: If necessary the reported
length was changed to Euclidean distance, to ensure the correct inequality.

Modified A* (Overdo Heuristic) Next consider the modified A* algorithm — the heuristic is param-
eterized by the multiplicative factor used to weigh the Euclidean distance estimate to the desitna-
tion. We call it the overdo parameter due to obvious reasons. As a result it is natural to discuss the
time/quality trade-off of the heuristic as a function of the overdo parameter. Figure 2 summarizes the
performance. In the figure the X-axis represents the overdo factor, being varied from 0 to 100 in steps
of 1. The Y-axis is used for multiple attributes which we explain below. First, it is used to represent
the average running time per plan. For this attribute, the scale is .02 seconds per unit. As depicted
by the solid line the average time taken without any overdo at all is 12.9 microseconds per plan. This
represents the base measurement (without taking the geometric information into account). Next, for
overdo value of 10 and 99 the running times are respectively 2.53 and .308 microseconds. On the
otehr hand, the quality of the solution produced by the heuristic detiorates as the overdo factor is
increased. We used two quantities to measure the error — the maximum relative error incurred over
10000 plans and the more interestingly the number of plans worse than a given threshold error. The
maximum relative error ranges from 0 for overdo factor 0 to 16% for overdo value 99. For the other
error measure, we plot one curve for each threshold error of 0%, 1%, 2%, 5%, 10%. The following
conclusions can be drawn from our results.

1. The running times improve significantly as the overdo factor is increased. Specifically the
improvements are a factor 5 for overdo parameter 10 and almost a factor 40 for overdo param-
eter 99.




ticks 0.64, #exp 1446, #fr 316

Figure 1: Figure illustrating the number of expanded nodes while running (i) Dijkstra (ii) A* algo-
rithms. As the figures clearly show the A* heuristic clearly is much more efficient in terms of the
nodes it visits. In both the graphs, the path is outlined as a dark line. The fringe nodes and the
expanded nodes are marked as dark spots. The underlying network is shown in light grey.




Figure 2: Influence of the “Overdo”-Parémeter on running time and quality of paths

2. In contrast, the quality of solution worsens much more slowly. Specifically, the maximum
error is no worse than 16% for the maximum overdo factor. Moreover, although the number
of erroneous plans is quite high (almost all plans are erroneous for overdo factor of 99), most
of them have small relative errors. To illustrate this, note that only around 15% of them have
relative error of 5% or more.

3. The experiments and the graphs suggest an “optimal” value of overdo factor for which the
running time is significantly improved while the solution quality is not too bad. Thus our
experiments are a step in trying to find an empirical time/performance trade-off as a function
of the averdo parameter.

4. We also found that the near-optimal paths produced were visually acceptable and represented a
feasible alternative route guiding mechanism. This method finds alternative paths that are quite
different than ones found by the k-shortest path algorithms and seem more natural. Intuitively,
the k-shortest path algorithms, find paths very similar to the overall shortest path, except for a
few local changes.

7 Discussion of Results

First, we note that the running times for the plain Dijkstra are reasonable as well as sufficient in
the contex of the TRANSIMS project. Quantitatively, this means the following: TRANSIMS is run
in iterations between the micro-simulation, and the planner modules, of which the route planner is




P 5 S

ticks 0.10, #exp 140, #fr 190
Figure 3: for illustration only: two instances of Dijkstras algorithms with a very high overdo pa-
rameter start at origin and destination respectively. One of them really creates the shown path, the
beginning of the other path is visible as a “cloud” of expanded nodes

one part. The Portland network we are intending to use has about 120000 links and about 80000
nodes. Simulating 24 hours of traffic on this network will take about 24 hours computing time on
our 14 CPU machine. There will be about 1.5 million trips on this network. Routing all these trips
should take 1.5 - 108 trips - 0.5 sec/trip ~ 9 days on a single CPU and thus less than 1 day on our
14 CPU machine. Since re-routing typically concerns only 10% of the population, we would need
less than 3 hours of computing time for the re-routing part of one iteration, still significantly less than
the micro-simulation needs.

Our results and the necessary contstraints placed by the functionality requirement of the overall
system imply that bidirectional version of Dijkstra’s algorithm is not a viable alternative. Two reasons
for this are: (i) The algorithm can not be extended in a direct way to path problems in a multi-modal
and time dependent networks, and (ii) the running times of A* is better than the bidirectional variant;
the modified A* is much more faster.

We have recently begun research for the next case study project for TRANSIMS. This case study
is going to be done in Portland, Oregon and was chosen to demonstrate the validate our ideas for .
multi-modal time dependent networks with public transportation following a scheduled movement.
Our initial study suggests that we now take .5 seconds per plan as opposed to .01 seconds in the
Dallas Ft-Worth case. All these extensions are important from the standpoint of finding algorithms
for realistic transportation routing problems. We comment on this in some detail below. Multi-modal
networks are an integral part of most MPO’s. Finding optimal (or near-optimal) routes in this envi-
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ronment therefore constitutes a real problem. In the past, solutions for routing in such networks was
handled in an adhoc fashion. In [BIM98], we have proposed models and corresponding algorithms
to solve such problems.

Next consider another important extension — namely to time dependent networks. In this case
the edge length is assumed to be a function of time. We make an important modeling assumption,
namely it does not pay a person to wait. This need not be true in general but is adequate for most pur-
poses. This implies that the edge length function is monotonically non-increasing. Time dependent
networks can also be used to models public transportation systems with fixed schedules. By using
an appropriate extension of the basic Dijkstra’s algorithm, one can calculate optimal paths in such
networks.

8 Conclusions

The computational results presented in the previous sections demonstrate that Dijkstra’s algorithm
for finding shortest paths is a viable candidate for compute route plans in a route planning stage of a
TRANSIMS like system. In fact, even more interestingly, the results demonstrate that the algorithm
that has optimized well compares well (or even sometimes better) than several heuristics proposed in
the literature. Thus such an algorithm should be considered even for ITS type projects in which we
need to find routes by an on-board vehicle navigation systems.

In the context of the TRANSIMS project, we are faced with the problem of routing many millions
of trips in iteration with a micro-simulation. Most trips have entirely different characteristics, such as
different starting locations, different starting times, and different preferences towards mode choice.
This leads to the consideration of one-to-one shortest path algorithms, as opposed to algorithms that
construct the complete shortest-path tree from a given starting (or destination) point. As is well
known, the worst-case complexity of one-to-one shortest path algorithms is the same as of one-to-
all shortest path algorithms. Yet, in terms of our practical problem, this is not applicable. First, a
one-to-one algorithm can stop as soon as the destination is reached, saving computer time especially
when trips are short (which often is the case in our setting). Second, since our networks are roughly
Euclidean, one can use this fact for heuristics that reduce computation time even more. One heuristic,
the Sedgewick-Vitter or A* algorithm, generates results that are provably optimal, but is a heuristic in
the sense that the worst-case complexity does not get any better although practical computing times
decrease. One can extend the approach of Sedgewick-Vitter or A* towards a “true” heuristic where
routes are no longer optimal but computation time goes down even more. The above approaches
were evaluated in the context of the TRANSIMS Dallas-Fort Worth case study. The underlying
road network was a so-called focussed network, with all streets including the local ones in a five
times five miles study area, and more and more streets left out when going away from the study
area. For that case, SV/A* turns out to be about a factor of two faster than regular Dijkstra; the
second heuristic could save, for example, another factor of 5 while generating results within 1% of
the optimal solution. ‘

Making the algorithms time-dependent in all cases slowed down the computation by not more
than a factor of two. Since we are using a one-to-one approach, adding extensions that for example
include personal preferences (e.g. mode choice) are straightforward; preliminary tests let us expect
slow-downs of not more than a factor 30. This apperently mainly induced by an quadrupeled net-
work (splitting links and adding bus topology), complicated time dependency functions representing
scheduled busses and presumably most import by the different type of delays inducing a qualtitatively
different exploration of the network by the algorithm. Extrapolations of the results for a Portland
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problem (the next TRANSIMS case study) show that, even when time-dependent and with the ex-
tensions, the route planning part of TRANSIMS still uses significantly less computing time than the
micro-simulation.

Last, we want to mention that under certain circumstances the one-on-one approach chosen in
this paper may also be useful for ITS applications. This would be the case when customers whould

require customized route suggestions, so that re-using a shortest path tree from another calculation
may no longer be possible.
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Appendix: Description of Basic Algorithms

In this section, we describe the basic algorithms considered in this paper. Most of the results in this
section are not new; we recall them here for completeness and for description of experimental results.

8.1 Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single source shortest path problem on a weighted (un)directed graph
G(V, E), when all the edge weights are nonnegative. Let w(u,v) denote the weight of an edge in the
network. '

Suppose we wish to find a shortest path from s to ¢. Dijkstra’s algorithm maintains a set S of
vertices whose final shortest paths from the source s have been already computed. The algorithm
repeatedly finds a vertex in the set u € V' — S which has the minimum shortest path estimate, adds u
to S and updates the shortest path estimates of all the neighbors of « that are not in S. The algorithm
continues until the terminal vertex is added to S. In general, it is convenient to think of the vertices
in the graph being divided into three classes during the execution of the algorithm: (i) shortest path
tree vertices — (those which have been added to S and hence their shortest path has already been
determined, (ii) unseen vertices— those for which the distance estimate is oo and (iii) fringe vertices
— those that are adjacent to the vertices in S but have themselves not been added to S. Now each
iteration of the algorithm consists of adding a fringe vertex with minimum distance to the shortest
path tree and updating its neighbors to be fringe vertices. Using this terminology, initially, only s is
a shortest path tree vertex, neighbors of s are fringe vertices, and others are unseen vertices.

DIKSTRA’S ALGORITHM outlines the steps of the algorithm. In the remainder of the section,
we will use d(u) to denote the cost of a shortest path from s to u. We will also assume that |[V| = n
and |E| = m. Also, for a given vertex v let N(v) denote the set of neighbors of v i.e. N(v) =
{w| (v,w) € E}. Finally, by the phrase extract a vertex from V we mean choose a vertex and delete
it from V.

DIJKSTRA’S ALGORITHM:

e Input: G(V, E) - anetwork, a source s and a destination vertex d and a non-negative weight
functionl : E — Z™.

e 1. Initialization: Set S = ¢, d(s) =0and Vv € V — {s},d(v) = co. Found = 0.

2. Iterative Step: while Found = 0 do

(a) Extract Minimum Step: Among all vertices v € V — § extract a vertex v with
minimum value of d(v). Set S = S U {v}. If v = d then set Found = 1.

(b) Decrease (Update) Key: For each edge (v, w), such that w € N(v), set d(w) =
min{d(w), d(v) + w(v, w)}.

o Output: A shortest path from sto d, i.e. apathp =< v, ... vy > wherevg = sand vy = d
and the weight w(p) =% w(v;_1, ;) is the minimum over all paths from s to d
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8.2 Bidirectional Dijkstra’s Algorithm

The bidirectional algorithm has been used in the operations research community and analyzed by
theoretical computer scientists providing quantitative reasons for its improved performance. (See
[LR89, Ma] for more details.) The bidirectional search algorithm consists of two phases. In the first
phase we altemate between two unidirectional searches: one forward from s, growing a tree spanning
a set of nodes S for which the minimum distance from s is known, and the second that consists of
growing a tree spanning a set of nodes D for which the minimum distance from d is known. We
alternately add one node to S and one to D until an edge crossing from S to D is drawn. At this
point, the shortest path is known to lie within the search trees associate with S and D except for one
additional edge from S to D. A geometric interpretation of the algorithm (in which the edges have
. unit weights) is as follows:

We start growing a ball around s and ¢, at each time step, the ball grows by 1 unit (in
terms of radius). We stop the algorithm, when the two balls collide; i.e. there exists a
vertex that becomes a part of both the balls. The path s ~~ v ~~ ¢, where v is the
vertex where the balls collide, represents the shortest path from s to .

As mentioned earlier, in case of weighted graph we also need to consider one extra cross for the
possible inclusion in the shortest path.

Lemma 8.1 The following statements hold:
(1) The shortest path from s to t has at most one cross edge from a vertex in S to a vertex in D.

2)w(s—k—1) <2w(s—1t)

Proof Sketch: We denote w(s — k — t) as the weight of the shortest path from s to ¢ going through
k. Let P = s ~~ £ — a —y ~r~ t denote a shortest path that has more than one edge. The
following inequalities are immediate from the correctness of Dijkstra’s algorithm and the fact that P
is a shortest path: w(s —z) 4+ w(z —a) > w(s, k) and w(t —y) + w(y — a) > w(y, k). This implies
w(s —z) +w(z — a) +w(t—y) +w(y — a) > w(s, k) + w(y, k) which is a contradiction.
Part 2: Let us say that shortest path from s to £ is of the form s ~~ z — y ~~ ¢, where z € S and
y € D. The following inequalities are immediate: w(s, k) < w(s — z) + w(z — y); w(y,k) <
w(t—y)+w(y—=z). This implies w(s, k) +w(k,y) < w(s—z)+w(z—y)+wt—y)+wly—z) <
2w(s—z—y—1t).

In [LR89], the authors show that if the weight of each edge in a complete directed graph with
n nodes is chosen from an exponential distribution, with high probability the bidirectional search
terminates after examining a substantially fewer edges than the unidirectional search.

Theorem 8.2 Let a, b, ¢ be constants. Define a family of probability distributions over a n-node di-
rected graph with edge weights, one distribution for for each n. each edge (i, j) has a probability of
(alogn)/b of being present. For those edges that are chosen, the length of the edge l. is indepen-
dently chosen according to a probability distribution whose density function f. has a value bounded
between b and c. The expected time to find a s —t shortest path using bidirectional search is O(/n).
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8.3 A Maodification For Euclidean Graphs: A*-Algorithm

When the underlying network is Euclidean, it is possible to improve the average case performance of
Dijkstra’s algorithm. Euclidean graphs are defined as follows. The vertices of the graph correspond
1o points in R% and the weight of each edge is proportional to the Euclidean distance between the
two points. Typically, while solving problems on such graphs, the inherent geometric information is
ignored by the classical path finding algorithms. The basic idea behind improving the performance
of Dijkstra’s algorithm is from Sedgewick and Vitter [SV86] and is originally attributed to Hart
Nilsson and Raphel [HNR68] is simple and can be described as follows. To build a shortest path
from s to ¢, we use the original distance estimate for the fringe vertex such as z, i.c. from s to
z (as before) plus the Euclidean distance from z to ¢. Thus we use global information about the
graph to guide our search for shortest path from s to ¢. To formalize this, define D(z,y) to be the
Euclidean distance between z and y and define [(z,y) to be the shortest path from z to y in the
graph. The length of the path as usual is equal to the sum of the edge lengths that constitute the
path: the weight of an edge (z, y) is defined to be D(z, y). Now each fringe vertex z is assigned the
following value: min,, {I(s, w) + D(w, z)} + D(z,t) The resulting algorithm runs much faster than
Dijkstra’s algorithm on typical graphs for the following reasons: (i) The shortest path tree grows in
the direction of ¢ and (ii) The search of the shortest path can be terminated as soon as ¢ is added to
the to the shortest path tree. The correctness of the algorithm follows from the fact that D(z,t) is
a lower bound on I(z,t). Another way to interpret the algorithm and its correctness is by using the
concept of vertex potentials — an idea first used by Gabow.

Concept of Vertex Potentials. Each vertex is assigned a non-negative value D(z) - called its po-
tential. The intuition is that when you enter a vertex v we receive D(v) dollars which are deducted
from the path and when we leave a vertex we add that amount of money to the path. Using these
potentials, let us define the length of the edges as follows

Y(u,v) € E, I(u,v) = l(u,v) + D(u) — D(v)
The potentials are called admissible or feasible if the new lengths are all positive. The following
theorem shows that the the shortest paths in the graph with modified weights remains the same.

Theorem 8.3 Let D be a set of admissible vertex potential. Then the weight of apath p =< s =
V1,...Ur =1t > from s tot is given by

=n
B(p) = ) U(vivit1) + D(s) — D(?)
=1
In other words the length of each path from s to t is changed by the same constant additive factor.
Thus if p is a shortest s — t path in the original graph then it is still the shortest path in the graph

with modified edge weights.

Proof: Consider a path p =< s = vy,...v, = t >. Clearly its weight under modified weight
function is

i=n

@) = Y Il(viviga)
=1
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= fl(’l)ﬁ’l]{.}.l)"‘*‘ D(v;) — D(vi+1)
=1

= %l(’vi’v.i_;.]) + D(S) - D(t)
=1

w(p) + D(s) — D(2)

1)
&
Il

8.4 Modified A*

We briefly discuss some of the heuristic improvements to the basic A* algorithm that can be used in
practice. Again, recall that in many practical situations (including TRANSIMS), it is not necessary
to find exact shortest paths — approximately shortest paths suffice. We tried two heuristic solutions in
this context. ‘

(1) The modified A* algorithm. Recall that the current label of a vertex consists of two compo-
nents — its shortest distance to the source and an estimate (usually the Euclidean distance) to the
destination. By choosing an appropriate multiplicative factor, we can increase the contribution of the
second component in calculating the label of a vertex. From a intuitive standpoint this corresponds
to giving the destination a high potential, in effect biasing the search towards the destination. The
resulting paths clearly need not be optimal. By choosing the appropriate bias factor, one can typi-
cally get faster algorithms at the cost of accuracy. As our results in Section 6 point out, it appears
that an appropriate constant results in a very good trade-off between quality of solution and the time
required.

(2) Combining A* with Bidirectional Search The discussion in the above sections suggests com-
bining the bidirectional search heuristic with the A* search. One possible way to do it is to use two
potentials D,(u) and Dy(u) for each vertex, the potentials reflecting the lower bounds (usually ge-
ometric distances) of u from s and ¢. A naive of implementing this idea is unfortunately incorrect,
since the two potentials imply building shortest path trees from s and ¢. As shown in [SI+97], a
modified potential suffices to ensure the correctness of the algorithm.

9 Discussion on Data Structures

(1) Arrays versus Heaps. In a naive implementation of the algorithm using an array 4, in which
for each vertex, v; we store the value of d(v;) in location .A(3). In each iteration Extract Minimum
Key takes O(n) time (finding a minimum value in an unsorted array takes O(n) time) and Decrease
Key takes time O(deg(v)). Here deg(v) denotes the degree of v. The total running time is therefore
Y, O(n + deg(v)) = O(n® + m). Using Binary Heaps (as has been done in the current imple-
mentation of the algorithm), we can improve the running time. First consider Extract Minimum Key
operation. The time to do this is O(logn) since we simply pick the top of the heap and then process
the data structure to maintain the heap property (using HEAPIFY). Next consider the Decrease Key
operation. This operation takes time O(deg(v)log n) for the following reason. We need to update
the distance estimate for each of the deg(v) neighbors, each operation taking time O(logn). The
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time to build the heap for the first time is O(n). Thus the total running time of the algorithm is
> v O((logn) + deg(v)logn)) = O(nlogn + mlogn) = O(n + m)logn. We also considered
using Fibonacci Heaps. Our experimental analysis revealed that typically the number of nodes that
are kept in a heap is around 500; thus using a more sophisticated data structure with higher constants
was not likely to yield better results in practice. Using Fibonacci heaps could potentially improve the
theoretical running time of the algorithm by of log(#), where H denotes the maximum heap size at
any stage of the execution. This implies an improvement of at most a factor of 9. But the constants
with the heap operations and the complicated code for implementing this data structure weigh more
heavily against it.

(2) Deferred Update. Recall that we need to update the values of the distance estimates in Step 2b
of DJKSTRA’S ALGORITHM. Assume that the heap is H, and degree of a node v being d,, it would
take roughly 2d,, log H operations to update the distance estimates. The reason for this is as follows:
We can maintain an auxiliary array that keeps pointers to the nodes in the heap. Every time a nodes
distance estimate is updated, the node moves through the heap (as a part of HEAPIFY operation) to
settle in the final position. During the course of this other nodes on its path also change positions.
This implies that the pointed values for each of the nodes need be updated. (We are assuming an array
implementation of the Heap.) Another possible way to do this is to insert multiple copies of a node in
the heap. In this way, the time taken is roughly proportional to adding these nodes plus the additional
factor depending on the size of the heap for future operations. Again, let d, denote the degree of
a node and d,4,; be the maximum degree. Then the heap size grows at most by a multiplicative
factor of dpes. Since the Heap operations take time roughly log H this implies that the total time for
executing Step 2b is no more than dpe; 10g(dmarH) wWhich is dyer (log H + 1og dpnes). Typically,
the average degree of a node in the Case study network is 2.8 ~ 3 and you expect that it only gets
inserted roughly only by half its neighbors resulting in an average increase of no more than 4 on the
size of the heap. This implies that we spend only an additional additive factor of 2d,, for each run of
Step2b.

(3) Hash Tables for Storing Graphs. The graph or the input we received from Dallas MPO consists
of long Link and Node Id’s. Although the naming convention is useful for in other contexts, such a
naming convention yields a inefficient use of the domain space. To illustrate the point, the link and
the node It’s given were typically made of 32 bits long. Thus the name space of for the nodes is
roughly 232, In contrast the number of nodes is roughly 10¢ ~ 212, Such a discrepancy immediately
motivated a use of hash tables to improve the naming space utilization. We used a Hash Table of size
roughly 2!4 (i.e. address is bits long). One important reason for doing this is clearly the efficiency
gained during accessing the long names. The efficiency is obtained for two possible reasons. The first
and more important reason is that the array used to store the structure (information) associated with
each node is small enough to typically fit the first level cache. In contrast arrays of size 232 will never
a fast cache and thus will imply a significant increase in the processing time. It is well known that
memory access is significant bottleneck in the design of fast algorithms. Another small reason is that
small words might be useful in efficient access of memory contents. Also, note that the Hash table
needs to be accessed only during input and output of the plans and thus the process is not expensive.

(4) Smart Label Reset We now discuss the improvement performed in the context of finding paths
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for a number of travelers. Note that in Step 1 we need to set the distance estimates of all the nodes
to be initialized to infinity. This takes O(n) time per run of the algorithm. We instead relabel only
those nodes whose labels have changed during the course of the algorithm. This simply consists of the
nodes that were at anytime inserted in the heap. Since on an average the total number of nodes visited
is a small fraction of the total number of nodes (in fact is O(,/n) for bidirectional implementation)
this yields significant improvements in the running time of the algorithm.

(5) Heap tricks At the innermost loop of our heap implementation are two small details: one is the
test on a special case at the end of the heap. This test can be replaced by setting unused elements
of the array to the value infinity, by this replacing an operation in the loop by (possibly) one more
iteration in the loop. The other possibility is to “streamline” the comparison at this 1oop from possibly
four down to three.

(6) struct of arrays vs. array of structs Following object oriented design goals one ends up having

different, independent arrays for storing data for the network, label-setting and the shortest-path-tree
module. Considering caching behavior of the processor it seems advantageous to combine these to
one big array of structs having entries for the different modules.
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